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Suppose a group G acts by homeomorphisms on a simply-connected space X.
There are a number of well-known results which show, under suitable hypctheses,
how to obtain generators and relations for G by looking at a ‘fundamental domain’
for the action. See, for instance, [1]-[10]. The purpose of this note is to call
attention to a particularly nice such presentation which is available in case X is a
CW-complex and the G-action permutes the cells. (We then say that X is a G-CW-
complex, or simply a G-complex.)

The presentation, which is most casily described in terms of the theory of graphs
of groups (cf. [7]), has the following form: One builds an abstract group G, which
is the fundamental gronzp of a certain graph of groups obtained from the action of
G on the l-skeleton of X. The result then is that G is obtained from G by
introducing one relation for every 2-cell of X 1nod G. See Section 3 for more details.
See also Theorem 1 in Section 1, where the same result is stated in more concrete
'anguage, independent of the theory of graphs of groups.

This theorem, as is probably evident from the rough statement of it given above,
is actually a quite trivial corollary of the Bass-Serre structure theorem for groups
acting on trees [7, §1.5.4]. Nevertheless, it appears that this corollary has gone
unnoticed, or, more to the point, that a number of people using group actions to
get presentations have simply overlooked the possibility that [7] (which is about
trees) could be fruitfully applied to group actions on spaces of dimension >1. In
particular, we show in Section 5 that Theorem 1 leads to the following finireness
criterion, which is an improvement of the previously known results of this type (cf.
13}, [6D):

Suppose a group G admits a simply-connected G-CW-complex X such that (a) the
isotropy group of every vertex is finitely presented; (b) the isotropy group of every
edge is finitely generated; and (c) X has a firite 2-skeleton mod G. Then G is finitely
presented.

* Partially supported by an NSF grant.

0022-4049/84/%$3.00 © 1984, Elsevier Science Publishers B.V. (North-Holland)



2 K.S. Brown

Theorem 1 also leads to an improvement of previously known results in the
situation where X has a subcomplex which is a fundamental domain for the action
(in the combinatorial sense). This will be discussed in Section 4.

This note grew out of -a general investigation of finiteness properties of groups,
in which the finiteness criterion above was n.eded as the starting point (and was
initialiy thought to be well-known). The results of that investigation, which are
somewhat more specialized than the results of the present paper, will appear
elsewiiore.

1. Statement of Theorem 1

Throughout this section G will be an arbitrary group and X a connected non-
empty C-CW-complex. We will need to introduce some terminology and notation
in order to state Theorem 1.

A l-cell o of X is said to be inverted under the G-action if there is an element
geG such that go=0 and g reverses the orientation of o. By a tree of
representatives for X mod G we mean a tree 7C X such that the vertex set ¥V of T
is a set of representatives for the vertices of X mod G and such that no I-cell of T
is inverted under the G-action. It is easy to see that such a tree 7 always exists and
that the 1-cells of T are inequivalent mod G.

By an edge of X we will mean an oriented 1-cell, i.e., a 1-cell o together with an
orientation of g. Note that G acts on the set of edges of X. It is always possible
to choose an orientation for each 1-cell of X which is not inverted under the action,
in such a way that these orientations are preserved by G. The corresponding set P
of edges, consisting of all the non-inverted 1-cells with the chosen orientations, is
then called an crientation of the G-complex X.

Any edge e has a well-defined initial vertex (or ‘origin’) o(e) and a well-defined
Jinal vertex (or ‘terniinus’) t(e), possibly equal to o(e). Given an edge e, we denote
by é the opposite edge, i.e., the same 1-cell o with the opposite orientation.

We now make a number of choices:

(a) Choose an orientation P.

(b) Choose a tre: of representatives T and let V be its set of vertices.

(c) Choose a set E* of representatives for P mod G, such that each ee E* has
o(e)e V' and such that each l-cell of T (with its chosen orientation) is in E*.
Choose a set £~ of representatives mod G for the edges of X which are inverted
under the action, again with o(e)e V for each ee E~, and let 2~ be the corres-
ponding set of I-cells of X.

(d) For each ee E* let w= w(e) be the unique element of V" which is equivalent
to #(e) mod G, and choose an element g,€ G such that 1(e) = g,w; take g,=1 if e is
in 7. Note, then, that the conjugation map c, given by g— g, ' gg, maps the isotropy
group Gy, onto the isotropy group G,; in particuiar, c,(G,) C G,,.

(e) Choose a set F of representatives mod G for the 2-cells of X, and choose a
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characteristic map (B, B)—(X, X‘"") for each 7= F, where B is the standard 2-cell
and X is the 1-skeleton of X. For simplicity, make the choices in such a way that
the attaching map B— X" is based at a vertex of T for each .

Finally, we wish to choose for each t€ F a relation which holds in G among the
elements g, and various elements of the isotropy groups G, and G, of the vertices
and 1-cells of X. This requires some preparation.

Note first that any edge of X starting in 7 has one of the following three forms:

(1) uwhgew (eeE*,u=o0(e), w=w(e),heG,),
Q) wm% hg;'v (e v,wasin (1), heG,),
3) v 0--7r;+-0 htv (eeE™,t inverts e, he G,).

In particular, this gives us a (non-canonical) way of associating to such an edge
an element g € G such that e ends in g7; namely, we set g equal to hg, in case (1),
hg.! in case (2), and A¢ in case (3). [This is non-canonical because the element /4 in
(1)-(3) is not unique, nor is ¢ in (3).]

Now let a be a combinatorial path in X starting at a vertex vy of 7. Let ¢, be the
first edge of « and let g, be associated to e, as above. Then e, ends in g, 7, so the
second edge of a has the form g,e, for scme edge e, starting in 7. Let g, be
associated to e, as above. Then the second edge of & ends in g,g,7. Continuing in
this way, we obtain elements g, ..., g, of G (where 7 is the length of &), such that
the successive vertices of « lie in 7, 2,7, 8,8,7,...,8,-*-8,1. Set g=g, - g,.

In case a is a closed path, we have guy=1v,, i.e., g€ G,,. Recalling that each g,
was defined in terms of the elements g, (¢€ E™¥) and elements of the various groups
G, (ve V) and G, (6 € 27), we may then view the equation defining g as a relation
among these elements. To state this inore precisely, we introduce an abstract group
G, defined to be the sum (or free product) of the G, (ve V), the G, (d€Z ™), and
a free group generated by elements g, (e€ E*). Let §; (i=1,...,n) be obtained by
replacing each occurrence of g, by the corresponding g, in the definition of g;
above, and let §=§,---§,. Then, assuming the path is closed, we have a ‘relator’
r=gg 'e0, i.e., an element of ker{G—G}.

We can now describe the last of our choices:

(f) For each t¢ F, choose a combinatorial path corresponding to the chosen at-
taching map for 7 (cf. (¢)), and construct a relator r,=§.g; ' from this as above.

Theorem 1. Suppose X i simply-connected. Then G is generated by the isotropy
subgroups G, (ve V), the isotropy subgroups G, (Ge€X"), and the elements g,
(e E™), subject to the following relations:

(i) g,=1ifeisanedge of T.

(i) g;'i,(g)g.=c.(g) for any e E* and g € G,, where i, is the inclusion G,&G )
and c,: G, Gy, is as in (d) above. [Thus both sides of the ‘relation’ are words in
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the given generators of G.]

(iii) i.(g)=/j.(g) for any ec E™ and geG,, where i,: G,%G, and j,: G, &G,
are inclusions, o being the 1-cell underlying e.

(iv) r.=1 (or, equivalently, §,=g,) for any t€F.

We will reformulate Theorem 1 and prove it in Section 3.

Remarks. (1) We have used the somewhat informal language of generators and rela-
tions in the statement of Theorem 1, which probably causes nc confusion, In case
there is any doubt, however, the precise meaning of Theorem 1 is that the map
G — G introduced above is surjective, and that its kernel is the normal subgroup of
G generated by the elements £, (e in T), £,'i.(8)8.c.(g)”" (notation as in (ii)), etc.

(2) If X is simply-connected and the action is free (i.e., every isotropy group is
trivial), then Theorem 1 reduces to the usual presentation which one obtains from
the isomorphism 7,;(G\ X)=G and a choice of maximal tree in G\ X.

2. Extension to the non-simply-connected case

. Let Y be a connected but not necessarily simply-connected G-complex. It turns
out that one can still obtain a presentation of G in this case, in which the funda-
mental group of Y plays a role. This result (Theorem 2 below) is actually a conse-
quence of Theorem 1. We are deriving this consequence now, before giving the
proof of Theorem 1, because the ideas involved will be needed in that proof.

Let the notation be as in Section 1, but with X replaced by Y, and let n=mn,(Y,v)
for any v e V. [Note that = is well-defined up to canonical isomorphism, since paths
in T give a unique change-of-basepoint isomorphism for any two elements of V.]
Let G be the group defined by the generators and relations given in the statement
of Theorem 1 (with X replaced by Y). More precisely, G is the abstract group
generated by the groups G, (ve V) and G, (ce€2") and by elements §, (eeE"),
subject to the relations (i)-(iv), with g, everywhere replaced by g,). We will show
that G is obtained from G by introducing further relations coming from n,
analogous to the relations r;.

Let a be a closed combinatorial path in Y based at a vertex of T. Recall from
the discussion preceding (f) in Section 1 that there is a (non-canonical) procedure
for associating to « a relator gg~!. Let § be the image of § in G and let r=
ge ' eker ¢, where ¢:G—G is the canonical map. Let [a) denote the class in 7
represented by a, and set i([a]) =r. Note that / appears to depend on a number of
choices, such as the choice of a combinatorial path « representing a given element
of n and the choice of group elements g; associated r0 a. Using Theorem 1,
however, we will prove:



Presentations for groups 3

Theorem 2. The map i is well-defined and is a homomorphism. The resulting
sequi:nce

l»n— G- G -1

is exact.

Proof. Let X be the universal cover of Y. Then the G-action on ¥ ‘lifts’ in a well-
known way to an action of a group F on X. Namely, H is the set of pairs (g, f)
such that g is in G and f: X— X is a homeomorphism covering the action of g on
Y. Note that we have a surjection H —G whose kernel is the group of deck transfor-
mations of the cover and hence is isomorphic to 7. [More precisely, a choice of a
lifting T of T to X yields a specific such isomorphism.} Note also that the H-orbits
of cells of X are in 1-1 correspondence with the G-orbits of cells of Y, and that the
isotropy subgroups of H acting on X map isomorphically to the isotropy subgroups
of G acting on Y. It is now easy to ‘lift’ to (H, X) the choices (a)-(f) made for
(G,Y), and one deduces from Theorem 1 applied to (H, X) a presentation for H.
But this presentation says precisely that H/=G. Hence ¢ is surjective and its kernel
is isomorphic to n.

Let j:m—ker ¢ be the isomorphism just obtained. We will show that j=i. Note
first that the identification of G with H above yieids an action of G on X compatible
with the maps G—G and X —Y. Moreover, the generators G,, G,, and g, of
G have interpretations relative to the G-action on X analogous to their interpreta-
tions relative to the G-action on Y. For instance the canonical map G,— G embeds
G, as the isotropy subgroup of G at the vertex 6 of T lying over v. Similarly, G,
can be identified with the isotropy group in G of a 1-cell 6 of X lying over ¢ and
having a vertex in T. Finally, g, for e E* has the property that #(é) is in g, 7,
where é is the lift of e starting in T.

Standard covering space theory, which is what we used to identify 7 with ker ¢
above, now yields the following description of j. If « is a closed combinatorial path
in Y based at ve V and & is the lift of @ to X starting at 0, then j({e]) is the unique
element heker ¢ such that & ends at Ad.

In order to relate this to r = i([a]) [which we still do not know to be well-defined],
we must refer back to the discussion preceding (f) in Section 1. Let g,...,&, and
e;,...,e, be the chosen group elements and edges associated to « as in that discus-
sion, and let g; (i=1, ..., ) be obtained by replacing g, by g, in the definition of g,.
Then we have r=gg~!, where g=g,---g, and §=§, --- §,. Let & be the lift of ¢; to
X starting in 7. Using the remarks above about the action of G on X, it is easy to
see that the lift @ of « starting in T consists of the edges é,, §,6-, £,8.6;, etc., and
hence that & ends in gT. It follows that & ends at g0, which is the same as rv since
gisin G,. But r is in ker ¢, so this says precisely that j([a]) =r. Hence r is indepen-
dent of all the choices, and j=i. This completes the proof.

Finally, we need to make a simple observation relating the G-action on paths in
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Y to the G-action on ker ¢ (by conjugation). Consider a closed combinatorial path
a in Y, not necessarily based at a vertex of 7. By change of basepoint, a gives rise
to a well-defined conjugacy class in , which we denote by {a}. We wish to relate
the classes {a} and {ga} for geG.

Proposition 1. The classes i({ga}) and i({a}) in ker ¢ are contained in the same G-
conjugacy class. More precisely, there is an elemeni g€ o (&) such that
i({ga}) =gifahg ™.

Proof. We may assume « is based at ve V. Let & be the lift of a to X starting at
0. Then @ ends at A0, where i =i([a])=j([a]) eker ¢. [Here j is as in the proof of
Theorem 2.] Now choose a path £ from v to gv, lift § to a path £ in X starting at
5, and let g€ G be the element covering g such that £ ends at g. The class {ga}
is represented by the composite path f(ga)f~', whose lift to X starting at o is
B(Ea@)(@hg ' B) . Since the iatter ends at ghg~'G and ghg™! is in ker ¢, it follows
that i({ga}) [=j({ga})] is represented by ghg~!. Thus i{gad)=gi{ah)g".

3. Reformulation and proof of Theorem 1

Throughout this section X will denote a simply-connected G-complex as in
Theorem 1. We retain all the notation of Section 1. Let K be the abstract graph
associated to the 1-skeleton on X. Thus the vertices of K are the vertices of X and
the edges of K are the edges of X, as defined in Section 1. (By abstract graph, here,
we simply mean a graph in the sense of [7]. All unexplained notation and ter-
minology in connection with graphs is that of {7].) Note that G acts on K as a group
of graph automorphisms, possibly with inversion.

Let K* be the subgraph of K consisting of all the vertices of X and all the edges
which are not inverted under the G-action. Let K’ be the ‘partial barycentric sub-
division’ of K obtained by subdividing each edge of X not in K*. Then G acts on
K’ without inversion and we may apply the results of [7, §1.5.4].

To this end we must make a number of choices, most of which come 1n a very
obvious way from the choices (a)-(d) made in Section 1. The only thing which re-
quires comment is the choice of a tree of representatives for K’ mo. 5. The tree of
representatives 7 for X mod G which we chose in Section 1 can be viewed as a tree
of representatives for K* mod G. This extends easily to a tree T’ of representatives
for K’ mod G; namely, we adjoin one ‘spoke’ to T for each ee E ™, this spoke being
the ‘first half’ of the subdivided edge e; going from o(e) to the barycenter of e.

Now let L be the quotient graph G\ K’. Note that L is ~btained from the graph
L*=G\ K" by attaching a spoke for every ee E~. A3 explained in [7, §1.5.4], L
supports a graph of groups (G, L), whose vertex and edge groups are the isotropy
subgroups of G at the chosen representatives for the vertices and edges of K’. In
the present context this takes the following form:
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To a vertex of L corresponding to a vertex v of 7 we assign the isotropy group
(,. To a vertex of L corresponding to the barycenter of an edge ee E~ we assign
the isotropy group at this barycenter, or, equivalently, the isotropy group G,
(where o is the 1-cell of X underlying e). To an edge of L corresponding to e€ E*
we assign the isotropy group G,. To an edge of L corresponding to the first half
of a subdivided ee E~ we assign the isotropy group of that first half, or, equi-
valently, the isotropy group G,. Finally, the required injections of an edge group
into the two corresponding vertex groups are given by inclusion maps and the
conjugation maps c, introduced in (d) of Section 1. See [7] for more details.

Now let G be the fundamental group of this graph of groups with respect to the
chosen maximal tree, i.e., G=m,(G, L,q(T")), where q: K’ =L is the quotient map.
For future reference we note that G is an amalgam if K* # K; namely, if we set
G*=m(G, L%, q(T)), then G is the sum of G* and the groups G, (6eX"),
amalgamated along the subgroups G, (ee E~). This makes sense because G, is a
subgroup of G* via G, C Gy € G*. [It is also worth noting here that G, is of index
2 in the corresponding G,.]

It is now easy to relate G to the presentation given in Theorem 1. In fact, a glance
at the definition of the fundamental group of a graph of groups shows that G is
generated by the groups G, (ve V), the groups G, (6€27), and elements g,
(ee E*), subject to the relations (i)-(iii) of Theorem 1 (with g, everywhere replaced
by g.). The content of Theorem 1, then, is that G is obtained from G by introduc-
ing the relations r,. More precisely, if we now denote by r, the image under G-G
of the element called r, in Section 1, then we have the following reformulation of
Theorem 1:

Theorem 1'. Let X be a simply-connected G-complex as above. Then the canonical
map G =G is surjective an.! its kernel is the normal subgroup of G generated by the
r.(teF).

Proof. Suppose first that X is I-dimensional (and hence that there are no r;). Then
K’ is a tree on which G acts without inversion, and Theorem 1’ is simply the result
obtained by applying to this action the Bass-Serre structure theorem [7, §1.5.4,
Theorem 13] for a group acting without inversion on a tree.

Note that all the results of Section 2 are now available to us fcr any connectad
1-dimensional G-complex Y, since Thecrem 1 has been proved in the 1-dimensional
case. In particular, if X is of arbitrary dimension, we apply Section 2 to the
1-skeleton Y of X. It is immediate from the definitions that the group G of Section
2 for this Y is precisely the same as the group we have called G in the present sec-
tion. We therefore have the short exact sequence

1-*7!—5*(7—‘0-*6—»1

of Theorem 2, where m=m,(Y). (Alternatively, iustead of using Theorem 2 we
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could appeal here to [7, §1.5.4, exercise 3].) Since X is simply-connected, we know
that n is normally generated by elements represented by attaching maps for the
2-cells of X. And if we just want a set of generators for i(r) as a no1 mal subgroup
of G, then it suffices to consider attaching maps a, for the 2-cells in F. For we can
obtain characteristic maps (and hence attaching maps) for the remaining 2-cells by
transforming the a, by elements of G; in view of Proposition 1, the resulting
elements of i(m) are conjugate in G to those coming from the a,. Recalling now
that r,, by definition, is equal to i([a,]) for some choice of «,, we see that
i(mr)=ker ¢ is indeed the normal closure of the r,. This completes the proof of
Theorems 1 and 1°.

4. Example: Group actions with a subcomplex as fundamental domain

In this section we assume: (a) X is a simply-connected G-CW-complex; (b) W is
a subcomplex such that every cell of X is equivalent mod G to a unique cell of W;
and (c) G acts without inversion on the 1-cells of X. [Note. It follows from (b) that
no edge of K with two distinct vertices is inverted by the G-action; so the effect of
(c) is simply to rule out the possibility that there are loops which are inverted.] We
will denote by V (resp. E) the set of vertices (resp. 1-cells) of W.

This situation was studied in [9], where X was further assumed to be simplicial.
The main theorem of [9] says that G is then the sum of the vertex isotropy groups
G, (ve V), amalgamated along their intersections. We will show that Theorem 1
leads to the following more precise result:

Theorem 3. Under the hypotheses (a)-(c), G is the sum of the groups G, (ve V),
amalgamated along the subgroups G, (ec E).

[The statement of the theorem means that G i» ,c1erated by the groups G,, sub-
ject to relations for each ee E which identify the copy of G, in G, with the copy
of G, in G, v and w being the vertices of e. Note, however, that this does not say

that G is an amalgam in the usual sense, except in the special case where the
1-skeleton of W is a tree.]

Proof. We must make a number of choices in order to apply Theorem 1. Note first
that W is necessarily connected, since its 1-skeleton is a retract of that of X. [In fact,
W is simply-connected, but we do not need to know this.] We can therefore take
the tree T in Section 1 to be a maximal tree of W. For E* we may take the set E
of I-cells of W, each cell being given some arbitrary orientation, and E~ is of
course empty. We take g, =1 for all e. Finally, let F be the set of 2-cells of W and
choose r, to be a word in the g,. [More precisely, if we express an attaching map
for 7 in terms of the edges in E and their opposites, then we may take r, to be the
corresponding word in the g, and their inverses.]
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Now look at the presentation given in Theorem 1. This yields generators G, and
&, and relations (i), (ii), and (iv). We may replace (i) by the relations g, =1 for all
e, since these relations do in fact hold in G. Hence the generators g, and relations
(1) can be dropped, with g, being replaced by 1 wherever it occurs in (ii) and (iv).
But then (iv) becomes vacuous and (ii) becomes the ‘amalgamation’ relation which
identifies the copy of G, in G, with that in G, for each e€ E. This proves the
theorem.

5. Finite presentation

As we stated in the introduction, the following consequence of Theorem 1 is what
motivated this paper:

Theorem 4. Let G be a group which admits a simply-connected G-complex
satisfying:

(a) Every vertex isotropy group is finitely presented.

(b) Every edge isotropy group is finitely generated.

(¢) X has a finite 2-skeleton mod G.
Then G is finitely presented.

Proof. In view of (c), it suffices to show that the group G of Theorem 1’ is finitely
presented. Now the hypotheses clearly imply that the group G+ defined in Section
3 is finitely presented. And G is obtained from G* by adjoining finitely many
finitely generated groups G,, amalgamated along subgroups G, of index 2. The
theorem therefore follows from:

Lemma. Let H be an amalgam A x.B, where A is finitely presented, B is finitely
generated, and C is of finite index in B. Then H is finitely presented.

Proof. Choose a finite set of generators a; for A, a finite set of generators ¢; for
, and a finite set of coset representatives b; for B/C. Now let H be the group with
generators d; and b; (in 1-1 correspondence with the g; and b;, respectively), subject
to the following three types of relations:

(i) Finitely many relations among the 4; which define the group A.

(ii) Finitely many relations which describe the permutation action of C on B/C;
more precisely, for each c; and b; there is an equation in B of the form ¢;b;=b;c
for some index k and some ce C. Express ¢; and c in terms of the generators a, of
A, let ¢; and ¢ be the corresponding expressions in the d,, and introduce the rela-
tion ¢b; = b,¢.

(iii) Finitely many relations which describe the permutation action of the b; on
B/C; more precisely, for each pair of representatives b;, b;, there is an equation in
B of the form b;b; = b-.c for some index k and some ce C. Let ¢ be the correspon-
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ding word in the &, as in (ii), and introduce the relation 5; b =B, ¢.

We have a canonical map y : H— H, which we will prove to be an isomorphism.
Let A be the subgroup of H generated by the a,. Clearly A maps isomorphically
to A under y. Let Cc A be the subgroup corresponding to C under this isomor-
phism, and let B be the subgroup of H generated by C and the 5;. The relations (ii)
and (iii) imply that the cosets 5;C exhaust all the left cosets of C in B, and it
foliows that B maps isomorphicaily to B under y. One can now use the universai
mappmg property of the amalgam H to define a map H—H inverse to , so the
1a

an icamarnhicm and H ic finitaly nrecantad
21k ‘ﬂvll‘uly‘lla.l‘ CRAl%Wd X X B l.‘llt‘lj P \n}\-lll.\v\-ln
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