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Suppose a group G acts by homeomorphisms on a simply-connected space X. 
There are a number of well-known results which show, under suitable hypotheses, 
how to obtain generators and relations for G by looking at a ‘fundamental domain’ 
for the action. See, for instance, [l]-[lo]. The purpose of this note is to call 
attention to a particularly nice such presentation which is available in case X is a 
CW-complex and the G-action permutes the cells. (We then say that X is a G-CW- 
corn&.x, or simply a G-complex.) 

The presentation, which is most easily described in terms of the theory of graphs 
of groups (cf. [7]), has the following form: One builds an abstract group c, which 
is the fundamentai: group of a certain gra& of groups obtained from the action of 
G on the l-skeleton of X. The result then is that G is obtained from G‘ by 
introducing one relation for every 2-cell of X mod G. See Section 3 for more details. 
See also Theorem 1 in Section 1, where the same result is stated in more concrete 
!,anguage, independent of the theory of graphs of groups. 

This theorem, as is probably evident from the rough statement ‘of it given above, 
is actually a quite trivial corollary of the Bass-Serre structure theorem for groups 
acting on trees [7, §1.5.4]. Nevertheless, it appears that this corollary has gone 
,unnoticed, or, more to the point, that a number of people using group actions to 
get presentations have simply overlooked the possibility that [7] (which is about 
trees) could be fruitfully applied to group actions on spaces of dimension ~1. In 
particular, we show in Section 5 that Theorem 1 leads to the following finifeness 
criterion, which is an improvement of the previously known results of this type (cf. 

[31, M): 
Suppose a group G admits a simply-connected G-CW-complex X such that (a) the 

isotropy group of every vertex is finitely presented; (b) the isotropy group of every 
edge is finitely generated; and (c) X has a finite 2-skeleton mod G. Then G is finitely 
presented. 
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Theorem t also leads to an improvement of previously known results in the 
situation where X has a subcomplex which is a fundamental domain for the action 
(in the combinatorial sense). This will be discussed in section 4, 

?his note grew out of .a general ~nvest~~at~on of finiteness properties of gruups, 
in which the finiteness criterion above was n&G&d as the starting point (and was 
initialiy thought to be well-known). The results of that investigation, which are 
somewhat more specialized than the results of the present paper, will appear 
elsewi; -3% 

Throu~bout this section G will be an arbitrary group and X a connected non- 
empty C-CW-complex. We will need to introduce some terminology and notation 
in order to state Theorem 1. 

A l-cell d of X is said to be inverted under the G-action if there is an element 
g E G such that ga = (t and g reverses the orientation of CT. By a tree uf 
~e~~ese~t~t~ve~ for X mod G we mean a tree I”c X such that the vertex set V of T 
is a set of representatives for the vertices of X mod G and such that no i-cell of r 
is inverted under the G-action. It is easy to see that such a tree T always exists and 
t”;lat the I -cells of i” are inequivalent mod G. 

By an edge of X we will mean an oriented l-cell, i.e., a l-cell cr together with an 
orientation of cr. Note that G acts on the set of edges of X. It is always possible 
to choose an orientation for each t-cell of X which is not inverted under the action, 
in such a way that these orientations are preserved by G. The corresponding set P 
of edges, consisting of all the non-inverted l-cells with the chosen orientations, is 
then called an orientation of the G-complex X, 

Any edge e has a well-defined ~~it~~~ vertex (or ‘origin’) o(e) and a wel~udefined 
~~~~ vertex (or “terminus’) t(e), possibly equal to o(e). Given an edge e, we denote 
by @ the ~~~u~~t~ edge, i.e., the same l-cell 0 with the opposite orientation* 

We now make a number of choices: 
(a) Choose an urientati~n P. 
ib) Choose a tre:: of representatives 7’ and let V be its set of vertices. 
(c) Choose a set E+ of representatives for P mod G, such that each GEE+ has 

o(e) E V’ and such that each l-cell of T (with its chosen orientation) is in E+. 
Choose a set E- of representatives mod G for the edges of X which are inverted 
under the action, again with o(e) E V for each eeE_, and let 27 be the corres- 
pending set of l-cells of X. 

(d) For each eEE+ let w = IV@) be the unique element of cc” which is equivalent 
to tie) mod G, and choose an element gee G such that t(e) = Gus; take ge = 1 if e is 
in 7’- Note, then, that the c~nj~~at~on map c, given by g-g;‘gg, maps the isotropy 
group Gtte) onto the isotropy ~~0~~ G,; in particulars c,(C,) g 

(d Choosy a set F of representatives mod G for the 2-cells of X, and choose a 
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characteristic map (B, E&-+(X, .A?“) for each TE& where R is the standard 2-cetl 
and A?‘) is the l-skeleton of X. For sim~Ii~ity~ make the choices in such a way that 
the attaching map &--+X~‘~ is based at a vertex of T for each r. 

Finally, we wish to choose for each r E F .TP relation which holds in G among the 
elements g@ and various elements of the isotropy groups G, and G, of the vertices 
and l-cells of X. This requires some preparation. 

Note first that any edge of X starting in 7”’ has one of the following three forms: 

(0 u v hg, w he (e E E ‘, u = o(e), w = w(e), h E GJ, 

u-hto ke (Ed E”, t inverts e, Itt E G,). 

In particular, this gives us a (non-canonical) way of associating to such an edge 
an element go G such that e ends in gT; namely, we set g equal to hg, in case (l), 
hg;’ in case (2), and ht in case (3). [This is non-canonical because the element h in 
(l)-(3) is not unique, nor is t in (3).] 

Now let cy be a combinatorial path in X starting at a vertex uO of 7“. Let @I be the 
first edge of cr and let gl be associated to ei as above. Then et ends in g, r, so the 
second edge of a has the form glez for some edge e2 starting in 7”* Let gz be 
associated to e2 as above, Then the second edge of a ends in glg2T. continuing in 
this way, we obtain elements gl, *.* ) g, of G (where n is the length of CT), such that 
the successive vertices of cy lie in ~~g~~,g~g*~~...,g~ -g,T. Set g=g, -kg,. 

In case a is a close;d path, we have guO= be, i.e., g E C,. Recalling that each g1 
was defined in terms of the elements g, (eE E+) and elements of the usurious grouts 
G, (U E V) and G, (a EZ-), we may then view the equation defining g as a relation 
among these elements. To state this more precisely, we introduce an abstract group 
G, defined to be the sum (or free product? of the G, (O E V), the G, (CT EAT), and 
a free group generated by elements & (e E E’+ )* Let & (i = 1, l t . ) n) be obtained by 
redrawing each occurrence of g, by the corresponding & in the definition of g1 
above, and let g =& .** g?,, Then, assuming the path is closed, we have a “relator’ 
r=gg-’ EG, i.e., an element of ker{&-+G}. 

We can now describe the last of our choices: 
(f) For each 1~ t &‘, choose a combinatorial path corresponding to the chosen at- 

tacl~ing map for z (cf. (e>), and construct a relatur r,=&g;’ from this as above. 

l’hcorern I, Suppose X i,: simply-connected. Then G is generated by the isorropy 
subgroups G, (u E V), the isotropy subgroups C;, (CI: EC- )$ a~~ the e~e~~ents ge 
(e E E+ )$ subject to the folio wing relations: 

(i) g, = I if e is an edge of T. 
(ii) g, ’ ie(g)gC = eJg\ for any e E E’ and g E C;r, where ie is the in~~~~s~~n G+GfrfZj 

and C, : G, -+ GW4e> is as in (d) above, [Thus both sides of the ‘rg~at~~~’ are words in 



We witf reformulate ‘theorem I and prove it in section 3. 

arks. (1) We have used the somewhat informal language af generators and rela- 
tions in the statement of Theorem 1, ~~~c~ probably pauses no confusion. In case 
there is any doubt* however, the precise meaning of Theorem 1 is that the map 
G -+C introduced above is surje~tive, and that its kernel is t normal su~~ruu~ af 

erated by the elements & (c” in T), ~~~~~~~~~~c~~g~-~ ( ation as in (ii~~, etc, 
If X is sirnp~y~~~nne~ted and the attain is free (i.e., every isotropy group is 

en Theurem 1 reduces to the usual resentat~~n which one 0 
the is~m~rphism 7tI(G \X~~~ and a choice of maximal tree in G \ X. 

. Let Y be a connected but not necessarily simp~y~~~nne~ted ~~curnp~ex. Zt turns 
dut that one can still obtain a presentation of C in this ease, in which the funda- 
mental group of Y plays a role. This result (Theorem 2 below) is actually a conse- 
quence of Theorem t l We are deri~y~ng this consequence now, before giving the 
proof of Theorem 1, because the ideas involved will be ne 

Let tbe notation be as in section f , but with X replaced by 
for any o E V. [Note that it is we~~~defined up to canonical iso 
in T give a unique change-of-basepoint isomorphism for any two elements of V.] 
Let G be the group defined by the gener rs and re~atiuns given in the statement 
of Theorem 1 ~with X replaced by Y). ore precise~y~ c is the abstract group 

r~ups 6, (u E V) and Ga (CM 27) and by elements & @E E’), 
ions @-(iv), with ge everywhere replaced by &,)* We will show 

that C is obtained from c by introducing further rotations coming from n, 
to the relations r,. 
a closed ~~rnbinat~ria~ path in Y based at a vertex of T. IRecall from 

the d~~~ussi~n preceding (f) in ~~~ti~~ i that there is a Knin-can~nical~ procedure 
for associating to a a relator &- ‘, Let g be the image of g in (!? and let r = 
&-’ E ker @, where @: &=+G is the canonical map. Let [a] denote the class in n 
represented by a, and set i([a]) = r. Note that i ap ears to depend on a number of 
choices, such as the choice of a ~~rnb~nat~ria~ path a representing a given e~ern~nt 
of R and the ch&ce of group elements gi associated to a. using Theorem it 
however, we will prove: 



ProoR Let X be the universal cover of Y. Then the ~-action on Y ‘lifts’ in a well- 
known way to an action of a group I2 on X. Namely, H is the set of pairs (g,f) 
such that g is in C and f: X-+X is a homeomorphism covering the action of g on 
Y, Note that we have a surjection N--G whose kernel is the group of deck transfor- 
mations of the cover and hence is isomorphic to n. [More precisely, a choice of a 
lifting F of I” to X yields a specific such isomorphism.‘~ Note also that the ~-orb~ts 
of cells of X are in 1-l correspondence with the G-orbits of cells of Y% and that the 
isotropy subgroups of .H acting on X map isomorphically to the isotropy subgroups 
of G acting on Y. It is now easy to ‘lift’ to (H, X) the choices (a)-(f) made for 
(G, Y), and one deduces from Theorem 1 applied to (H, X) a presentation for H. 
But this presentation says precisely that H= i?. Hence @ is surjective and its kernel 
is isomorphic to it, 

Let j : z-+ker @ be the jsomorphism just obtained. We will show that j 7 i, Note 
first that the identification of C? with Ii above yields an action of c on X compatible 
v-&h the maps 0-G and X -+Y. Moreover, the generators G,, t&, and 9, of 
a have interpretations rcjtative to the G-action on X analogous to their interpr~ta- 
tions relative to the G-action on Y. For instance the canonical map C, -+d embeds 
G,? as the isotropy subgroup of C? at the j’drtex 0” of T lying over u, ~irnilar~y~ G, 
can be identified with the isotropy group in C? of a l-cell 6 of X lying over 0 and 
having a vertex in ri”. finally, & for eE E+ has the property thaf t(2) is in S, ‘1”, 
where ti;: is the lift of e starting in i”, 

Standard covering space theory, which is what we used to identify n: with ker @ 
above, now yields the following description of j. If a! is a closed combin~~to~ial path 
in Y based at u E V and d is the lift of fy to X starting at 6, then j([lxfr is the unique 
element h E ker @ such that d ends at hu”. 

in order to relate this to r = ~([cY]) [which we still do nof know to be quell-defined~, 
we must refer back to ehe discussion preceding (f) in Section 1. Let g i, =. . , grt and 

et p l es ) ep be the chosen group elements and edges associated to at as in that discus- 
sion, and let & (i= 1, ..*) r) be obtained by replacing ge by 9, in the definition of g18 
Then we have r=gg-‘, where g=gI **sg, and S=#l *e-S,. Let $i be the lift of ei to 
X starting in i”. Using the remarks above about the action of G on X, it is easy to 
see that the lift & of CZI starting in F consists of the edges e’,, &A, &&@J, etc., and 
hence that 6! ends in S?“. It follows that ti ends at gu”, which is the same as ru‘ since 
g is in C,. But f is in ker @, so this says precisely that j([a]) = r. Hence r is indepen- 
dent of all the choices, and j= i. This completes the proof. 

finally, we need to make a simple observation relating the ~-action on paths in 
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Y to the o-action on ker @ (by conjugation). Consider a closed combinatorial path 
a in Y, not necessarily based at a vertex of T. By change of base~oint, a gives rise 
to a weal-defined conjugacy class in z, which we denote by (a). We wish to relate 
the Grasses {cx) and (g?z} for gE C. 

~r~~~s~~~~ 1, The classes i({g~}) and i((tr)) in ker Qi ate container in the sume C?- 
conjugwy class. More precisely, there is an element g E q@-‘(g) such that 
i(~g~~~ =~~(~~~~~~~~ 

roalt, We may assume tr is based at UE V. Let d be the lift of cy to X starting at 
6. Then d ends at hu”, where h =i([a]) ==j([a]) E ker @. [Here j is as in the proof of 
Theorem 2.3 Now choose a path /.? from u to go, lift p to a path fl in X starting at 
6, and let #E 0 be the eIement covering g such that p ends at @. The class {gcu) 
is represented by the composite path ~(g~ -r , whose lift to X starting at 6 is 
~(~~~(~~~-I~~-~” Since the iatter ends at gh#-% and ghg-” is in ker @, it follows 
that i({ga}) [=j({ga))] is represented by ghg-‘. Thus i({ga))=#({a})&-‘. 

Throughout this section X wilf denote a si~~~yac~n~ec~e~ ~0~~~~1~~ as in 
Theorem 1. We retain all the nutation of Section 1. Let K be the abstract graph 
associated to rhe l-skeleton on X. Thus the vertices of K are the vertices of X and 
the edges of A’ are the edges of X, as defined in Section l- (By destruct gruels here, 
we simply mean a graph in the sense of [71. AI1 unexplained notation and ter- 
minology in connection with graphs is that of (71.) Note that G acts on K as a group 
of graph automorphisms, possibly with inversion. 

Let EC* be the subgra~h of K consisting of all the vertices of K and ah the edges 
which are not inverted under the G-action. Let K be the ‘partial barycentric sub- 
division” of K obtained by subdivjding each edge of K not in K’. Then G acts on 
AC’ without inversion and we may apply the results of 17, $1.5.41. 

To this end we must make a number of choices, most of which come rn a very 
obvious way from the choices (a~~(d~ made in Section 1 l The only thing which re- 
quires comment is the choice of a tree of representatives for K’ mo. S. The tree of 
representatives T for X mod 61 which we chose in Section 1 can be viewed as a tree 
of representatives for K+ mod G. This extends easily to a tree T’ of representatives 
for K’ mod G; namely, we adjoin one ‘spoke’ to T for each e E E-, this spoke being 
tne ‘first half’ of the subdivided edge e, going from o(e) to the hary~enter of e. 

ow let L be the quotient graph G\ A”“, Note that L is ~~btained from the graph 
I2 - - ~\~’ by attaching a spoke for every eEE”. As explained in 17, 91.5.43, L 
supports a graph of groups (G, L), whose vertex and edge groups are the isotropy 
subgroups of G at the chosen representatives for the vertices and edges of K’. In 
the present context this takes the fo~Iowing form: 
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To a vertex of L corresponding to a vertex o of T we assign the isotropy group 
Go. To a vertex of L corresponding to the barycenter of an edge eE E- we assign 
tie isotropy group at this barycenter, or, equivalently, the isotropy group G, 
(where o is the l-cell of X underlying e). To an edge of L corresponding to e E Et 
we assign the isotropy group G,. To an edge of L corresponding to the first half 
of a subdivided eE E- we assign the isotropy group of that first half, or, equi- 
valently, the isotropy group G,. Finally, the required injections of au edge group 
into the two corresponding vertex groups are given by inclusion maps and the 
conjugation maps c, intrisduced in (d) of Section 1. See [7] for more details. 

Now let G’ be the fundamental group of this graph of groups with respect to the 
chosen maximal tree, i.e., G = nl(G, L, q( T’)), where (7 : K’-+L is the quotient map. 
For future reference we note that G is an amalgam if Kf #K; namely, if we set 
G ‘+ - nr(G, t’,q(T)), then G is the sum of G’ and the groups Ga (G EC- ), 
amalgamated along the subgroups G, (e E E-). This makes sense because G, is a 
subgroup of G’ via G, c GO(,) c G+. [It is also worth noting here that G, is of index 
2 in the corresponding G, .] 

It is now easy to relate G to the presentation given in Theorem 1. In fact, a glance 
at the definition of the fundamental group of a graph of groups shows that G is 
generated by the groups G, (O E V), the groups GO (oEZ-), and elements S, 
(Ed E+), subject to the relations (i)-(iii) of Theorem 1 (with ge everywhere replaced 
by 9,). The content of Theorem 1, then,, is that G is obtained from G by introduc- 
ing the relations r,. More precisely, if we now denote by rr the image under G -+G 
of the element called r, in Section 1, then we have the following reformulation of 
Theorem 1: 

Theorem 1’. Let X be a simply-connected G-complex as above. Then the canonical 
map c + G is surjective an,:’ its kernel is the normal subgroup of e generated by the 
rT (TEF). 

Proof. Suppose first that X is I-dimensional (and hence that there are no r,b. Then 
K’ is a tree on which G acts without inversion, and Theorem 1” is simply the result 
obtained by applying to this action the Bass-Serre structure theorem [7, $1.5.4, 
Theorem 131 for a group acting without inversion on a tree. 

Note that all the results of Section 2 are now available to us fcr any connected 
i-dimensional G-complex Y, since Thecrem 1 has been proved in the 1 -dimensional 
case. In particular, if X is of arbitrary dimension, we apply Section 2 to the 
l-skeleton Y of X. It is immediate from the definitions that the group G of Section 
2 for this Y is precisely the same as the group we have called G in the present sec- 
tion. We therefore have the short exact sequence 

of Theorem 2, where II = zl( Y). (Alternatively, i.rstead of using Theorem 2 we 
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could appeal here to [7, $15.4, exercise 31.) Since X is simply-connected, we know 
that II is normally generated by elements represented by attaching maps for the 
Z-cells of X. And if we just want a set of generators for i(n) as a not ma1 subgroup 
of G, then it suffices to consider attaching maps a, for the 2-cells in F. For we can 
obtain characteristic maps (and hence attaching maps) for the remaining 2-cells by 
transforming the a, by elements of G; in view of Proposition 1, the resulting 
elements of i(n) are conjugate in G to those coming from the a,. Recalling now 
that r,, by definition, is equal to i([a,]) for some choice of CY,, we see that 
i(n) = ker @ is indeed the normal closure of the r,. This completes the proof of 
Theorems 1 and 1’. 

4. Example: Group actions with a subcomplex as fundamental domain 

In this section we assume: (a) X is a simpiy-connected G-CW-complex; (b) W is 
a subcomplex such that every cell of X is equivalent mod G to a unique cell of IV; 
and (c) G acts without inversion on the l-cells of X. [Note. It follows from (b) that 
no edge of K with two distinct vertices is inverted by the G-action; so the effect of 
(c) is simply to rule out the possibility that there are loops which are inverted.] We 
will denote by V (resp. E) the set of vertices (resp. l-cells) of IV. 

This situation was studied in [9], where X was further assumed to be simplicial. 
The main theorem of [3] says that G is then the sum of the vertex isotropy groups 
6, (o E V), amalgamated along their intersections. We will show that Theorem 1 
leads to the following more precise result: 

Theorem 3. Under the h,vpotheses (a)-(c), G is the sum of the groups G, (v E V), 
amalgamated along the subgroups G, (e E E). 

[The statement of the theorem means that G ;a ,ciaerated by the groups G,, sub- 
ject to relations for each eE E which identify the copy of G, in G,, with the copy 
of G, in G,,, v and w being the vertices of e. Note, however, that this does not say 
that G is an amalgam in the usual sense, except in the special case where the 
l-skeleton of W is a tree.] 

Proof. We must make a number of choices in order to apply Theorem 1 l Note first 
that W is necessarily connected, since its l-skeleton is a retract of that of X. [In fact, 
W is simply-connected, but we do not need to know this.] We can therefore take 
the tree T in Section 1 to be a maximal tree of IV. For E+ we may take the set E 
of l-cells of W, each cell being given some arbitrary orientation, and E- is of 
course empty. We take g, = 1 for all e. Finally, let F be the set of 2-cells of W and 
choose rr to be a word in the g,. [More precisely, if we express an attaching map 
for t in terms of the edges in E and their opposites, then we may take rr to be the 
corresponding word in the g, and their inverses.] 
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Now look at the presentation given in Theorem 1. This yields generators G, and 
g,, and relations (i), (ii), and (iv). We may replace (i) by the relations g,= 1 for all 
e, since these relations do in fact hold in G. Hence the generators ge and relations 
(i) can be dropped, with g, being replaced by 1 wherever it occurs in (ii) and (iv). 
But then (iv) becomes vacuous and (ii) becomes the ‘amalgamation’ relation which 
identifies the copy of GP in GO(,) with that in GtfeI for each eE E. This proves the 
theorem. 

5. Finite presentation 

As we stated in the introduction, the following consequence of Theorem 1 is what 
motivated this paper: 

Theorem 4. Let G be a group which admits a simply-connected G-complex 
satisfying: 

(a) Every vertex isotropy group is finitely presented. 
(b) Every edge isotropy group is finitely generated. 
(c) X has a finite 2-skeleton mod G. 

Then G is finitely presented. 

Proof. In view of (c), it suffices to show that the group G of Theorem 1’ is finitely 
presented. Now the hypotheses clearly imply that the group G’ defined in Section 
3 is finitely presented. And G is obtained from G’ by adjoining finitely many 
finitely generated groups G,, amalgamated along subgroups G, of index 2. The 
theorem therefore follows from: 

Lemma. Let H be an amalgam A *c B, where A is finitely presented, B is finitely 
generated, and C is of finite index in B. TIzen H is finitely presented. 

Proof. Choose a finite set of generators ai for A, a finite set of generators ci for 
C, and a finite set of coset representatives bi for B/C. Now let fl be the group with 
generators tii and b; (in l-l correspondence with the ai and big respectively), subject 
to the following three types of relations: 

(i) Finitely many relations among the &i which define the group A. 
(ii) Finitely many relations which describe the permutation action of C on B/@; 

more precisely, for each ci and bi there is an equation in B of the form c, b, = bk c 

far some index k and some CE C. Express ci and c in terms of the generators aq of 
A, let ei and P be the corresponding expressions in the &, and introduce the rela- 
tion Ei6j= 6kE. 

(iii) Finitely many relations which describe the permutation action of the bi on 
B/C, more precisely, for each pair of representatives b,, bj, there is an equation in 
B of the form bibj = b-c for some index k and some CE C. Let c’ be the correspon- 



ding word in the aq as in (ii), and ~utrodu~e the relation b;:6j =6&L 
We have a canonical map v : .@-*H, which we will prove to be an jsomorphism. 

Let 2 be the subgroup of fl venerated by the Gq. clearly A maps isomorphi~a~ly 
to under w. Let es;: 2 be the subgroup corresponding to C under this isomor- 
phism, and let @ be the subgroup of I;f generated by c and the & The relations (ii) 
and (iii) imply tlnat the cosets 6’&? exhaust all the left cosets of c in 1?, and it 
foXlows that I? maps isomorphically to B under tg. One can now use the universal 
mapping property of the ~al~arn H to define a map H-cl? inverse to VI, so the 
latter is indeed an isomor~h~sm and H is finitely presented, 
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